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Abstract
We study efficient deterministic executions of parallel algorithms on restartable fail-stop CRCW PRAMs. We allow

the PRAM processors to be subject to arbitrary stop failures and restarts, that are determined by an on-line

adversary, and that result in loss of private memory but do not affect shared memory. For this model, we define and

justify the complexity measures of: completed work, where processors are charged for completed fixed-size update

cycles, and overhead ratio, which amortizes the work over necessary work and failures. This framework is a nontrivial

extension of the fail-stop no-restart model of [KS 89].

We present a simulation strategy for any N processor PRAM on a restartable fail-stop P processor CRCW

PRAM such that: it guarantees a terminating execution of each simulated N processor step, with O(log= N) overhead

ratio, and O(min{N + Plog2 N + M log N, N p 0 6 )) (sub-quadratic) completed work, where _f is the number of

failures during this step's simulation. This strategy is work-optimal when the number of simulating processors is

P < NI log2 N and the total number of failures per each simulated N processor step is O(N/ log N). These results
are based on a new algorithm for the Write-All problem "P processors write l's in an array of size N", together

with a modification of the nain algorithm of [KS 89] and with the techniques in [KPS 90, Shy 89].
We observe that, on P = N restartable fail-stop processors, the Write-All problem requires fl(N log N) coin-

pleted work, and this lower bound holds even under the additional assumption that processors can read and locally

process the entire shared memory at unit cost. Under this unrealistic assumption we have a matching tipper bound.

The lower bound also applies to the expected completed work of randomized algorithms that are subject to on-line

adversaries. Finally, we desribe a simple on-line adversary that causes inefficiency in many randomized algorithms.

1 Introduction alistic features. The PRAM requires: (1) global syn-

chronization, (2) simultaneous access across a significant

Context of this work: bandwidth to a shared resource (memory), and (3) that

processors, memory and their interconnection must be
The model of parallel computation known as the Par- perfectly reliable. The gap between the abstract mod-

allel Random Access Machine or PRAM [FW 78] his els of parallel computation and realizable parallel corn-

attracted much attention in recent years. Many cfi- puters is being bridged by current research. For ex-

cient and oplimal algorithms have been designed for it, ample, memory access simulation in other architectures

see the surveys [EG 88, KR 90]. The PRAM is a conve- is the subject of a large body of literature surveyed in

nient abstraction that combines the power of parallelism [Val 90a], for some recent work see [iP 89, Ran 87,

with the simplicity of a RAM, but it has several unre- Upf 891. Asynchronous PRAMs are examined in [CZ 89,

*Computer Science Dept., Brown University, PO Bo 1910, CZ 90, Gib 89, MSP 90, Nis 90]; this research on syn-

Providence, RI 02912, USA. pck(Qcs.brown.edu. The research of chronization is related to the study of parallel reliable
this author was supported by NSF grant 1111-8617344 and ONIR comnlpul.al.ions, which is the subject of this paper.
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Cornputer Science Dept., Brown University, P0 Bor 191O, Ilere, we continue and extend the study of fault tol-
I'rovidence, BI 0291!?, USA, and Digital Equipm'nt Corpora- crance that was initiated in [KS 89] and show that arbi-
tion, LfGP-*/T2, 550 King Strect, Littleton, MA 01460, USA. trary PRAM algorithms can be efficiently and deter-

mministically execited on restartable fail-stop PRAMs

(whose processors are subject to arbitrary dynamic pat-

- " M~rr A- terns of failures and restarts). As it was shown in
j . . . . [K 89], it is possible to combine efficiency and fault-

APproVed( toz pu!:ic r, ier.~[S8] t spsil ~ocmieefcec nlfutDi= z u, ri t tolerance in many key PRAM algorithms in the presence

----------- uof arbitrary dynamnic fail-stop processor errors (when

processors fail by stopping and do not perform any fur-
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tlier actions). Contributions:

It was determined that efficient and fault-tolerant so- We allow PRAM processors to be subject to on-line (dy-
lutions for a certain basic problem are fundamental in namic) failures and restarts. Our failure/restart errors
making efficient parallel algorithms fault-tolerant. This namic)failurs ad rars Or failure/r e eroproblem is the Write-All problem: are not the same as the errors of omission because pro-

cessors lose their state after a failure, while errors of
omission cause a processor to skip a number of stepsGiven a P-processor PRAM and without losing its context.

a O-valued array of N elemients,wihulongtscte.
write value 1 into all array locations. We concentrate on the worst case analysis of the coin-

pleted work of deterministic algorithms that are sub-

ject to arbitrary adversaries, and on the overhead ratio,
This problem was formulated to capture the essence of which amortizes the work over the necessary work and
the computational progress that can be naturally ac- failures/restarts.
complished in unit time by a PRAM (when P = N). In our model processors fail and then restart in a

Thus, in the absence of failures, this problem is solved way that makes it possible to develop terminating al-
by a trivial and optimal parallel assignment. However, gorithms, while relaxing the requirement that one pro-
fault-tolerant solutions that must be efficient for worst cessor must never fail. We account for tire work per-
case adaptive adversaries are non-obvious, formed by the processors in a way that discounts trivial

The iterated Write-All paradigm was employed (in- adversaries that would otherwise force quadratic work
dependently) in [KPS 90] and [Shv 891 to extend the Write-All solutions. To guarantee algorithm termina-
results of [KS 891 to arbitrary PRAM algorithms (sub- tion and sensible accounting of resources, we introduce

ject to fail-stop errors without restarts). In addition to an update cycle, that generalizes the standard PRAM
the general simulation technique, [KPS 90] analyzed the read/coinpute/write cycle. In Section 2, we first de-

expected behavior of several solutions to Write-All us- fine the model and associated complexity measures, an(l
ing a particular random failure model. [Shy 89] presents then discuss the reasons for the choices made. The dis-

a deterministic optimal work execution of PRAM algo- cussion motivates the use of update cycles, the only non-
rithms subject to worst case failures given parallel slack- obvious technical choice made.
ness (as in [Val 90b]). The trivial quadratic lower bound cited above is based

A simple randomized algorithm that serves as a basis on a thrashing adversary. It depends on the adver-
for simulating arbitrary PRAM algorithms on an asyn- sary exploiting the separation of read and write in-

chronous PRAM is presented in [MSP 90]. Note that structions in PRAMs. When reads and writes are

this asycnhronous simulation has very good expected accounted together in update cycles it no longer ap-

performance for the problem of this paper when the ad- plies. Instead, we show that the Write-All problem of
versary is off-line. Recently, [KPRS 90] further refined size N requires Q(N log N) work. This lower bound

the results of [KPS 90] to produce an approach that holds, even if processors could read and locally pro-

leads to constant expected slowdown of IRAM algo- cess all the shared memory at unit cost. Our simple

rithnis when the power of the adversary is restricted, lower bound is of interest, because it is matched by an

[KI RS 90] has also improved the fail-stop deterministic O(N log N) upper bound under these assumptions. (Re-
lower and tipper bounds of [KS 89] (by loglogN fac- mark: An Q(N log N) lower bound was recently shown

tors). in [KPRS 90] using a different technique and different

The general problem of assigning active processors to assumptions for a fail-stop no-restart model.) '[ire up-

tasks has similarities to the problems of resource allo- per bound proof arguments lead to a modification of

cation in a distributed setting. Distributed controllers the basic algorithm of [KS 89], so that it is efficient and

have been developed for resource allocation such as the correct in both the original setting, and with the fail-

algorithms of [LGFG 86] (in a probabilistic setting), arid ure an(I restart errors. We describe these arguments if]

[AAtPS 871 (in a deterministic setting). Fault-tolerance Section 3.
of particular network architectures is also studied in In Section 4 we present the main result and support-

[I)DITU 86]. lHowever, the underlying distribuited coin- ing algorithms. This is a simulation strategy for any

ptation models, the algorithnims and their analysis are N processor PRANI on a restartable fail-stop P proces-
quite different, froin the parallel setting studied here. sor CI1.C\V PR1IAM such that: it guarantees a teruinat-

Finally, the work presented here deals with dynamic ing execution of each simulated N processor step, with

patterns of faults - for recent advances on coping with O(log 2 N) overhead ratio, and (sub-quadratic) con-

static fault, patterns see [K* 90]. We consider fault, pleted work O(min{N + Plog2 N+Al log N, N.P)r)),

grannmarity at the processor level --- for recent work on where Al is the nmber of failures during this step's

gate granilarities see [All 90, Pip 85, |hud 85]. simulation.
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This strategy is work-optimal when the number of update cycle consists of reading a small fixed nuni-
simulating processors is P < N/log2 N and the total ber of shared memory cells (e.g., < 4), performing
number of failures per each simulated N processor step some fixed time computation, and writing a small
is O(N/logN). The optirnality result is preserved, of fixed number of shared memory cells (e.g., _< 2).
course, in the absence of failures. Our approach is based
on: (a) a new algorithm for Write-All whose completed The parameters of the update cycle, i.e., the number
work is O(N • pog32 +6) for P < N and any 6 > 0, of read and write instructions, are fixed, but depend
and which can handle any pattern of failures/restarts, on the instruction set of the PRAM; see [FW 78] for a
(b) a modification of an algorithm from [KS 89], and PRAM instruction set. The values quoted (4 and 2) are
(c) the techniques developed in [KPS 90, Shv 89]. sufficient for our exposition.

The lower bounds apply to the worst case work of de- We use the fail-stop with restart failure model, where
terministic algorithms as well as to the expected work of time instances are the PRAM synchronous clock-ticks:
randomized and deterministic algorithms. Interestingly,
randomization does not seem to help, given on-line, 1. A failure pattern F (i.e., failures and restarts) is de-
i.e, non-prespecified, patterns of failures. For example, termined by an on-line adversary, that knows ev-
it is easy to construct on-line failure and restart (no- erything about the algorithm and is unknown to
restart) patterns that lead to exponential (quadratic) the algorithm.
in N expected performance for the algorithms presented
in [MSP 90]. These stalking adversaries are described in 2. Any processor may fail at any time during any up-
Section 5, where we also copcldude with some open prob- date cycle, or having failed it may restart at anylems. 

time, provided that:

(i) at anmy time during the computation at least one
processor is executing an update cycle that success-

2 Definitions fully completes, and

(ii) failures call occur before or after a write of a
2.1 Restartable fail-stop CRCW PRAM single bit but not during the write, i.e., bit writes

are atomic.
We use the COMMON CRCW PRAM model, where all
concurrently writing processors write tie same value. 3. Failures do not affect the shared memory, but the
Processors are subject to stop failures and restarts as failed processors lose their private memory. Pro-
in [SS 83]. Our algorithms are described in a model cessors are restarted at their initial state with their
independent fashion using high level notation with the PID as their only knowledge.
obvious forall/parbegin/parend parallel construct.

The basis of the model is the PRAM of [FW 781: Note that failures lire are different from the errors of
omission, where processors preserve their local context.

The failure and restart patterns are syntactically defined1. There are P initial synchronous processors. Each
as follows:

processor has a unique permanent identifier (P11)

in the range 0, ... , P- 1, and each processor always Definition 2.1 A failure pattern F is a set of triples
knows its ri, and Iie nunmber of processors P). <tag, Pin, I > where tag is either failure indicating pro-

2. The global memory accessible to all processors cessor failure, or restart indicating a processor restarl.,

is denoted as9 shiared, in addition each proces- I'ID is the processor identifier, and t is the time indicat-

sor hIas a constant size local memory denoted as ing when the processor stops or restarts. The size of the

private. All momory cells are capable of storing failure pattern F is defined as the cardinality IFI. 0
O(log mmax{N, P}) bits on inpmts of size N. d-

For siniplicity of presentation, we assumnie that the

3, The input is stored in N cells in shared memory, PRA M shared menmory writes of O(log max{ N, P)) bit
and tie rest, of the shared imemnory is cleared (i.e., words are atomic. Algorithms using tihis ass pii t( in can I
contains zeroes). The processors have access to the be easily converted to use only single bit at-oimic writes
input and its size N. as in [KS 89].

We investigate two natural complexity miesures, ----------
In all our algorithmis: completed work and overhead ratio. The completed

work measimre generalizes the standard Parallrl-time x
S'lihe PIRAM processors execte sequences of in- Processors product and the available processor steps of
structions that are grouped in update cyclr.q. Each [KS 891. The overhead ratio is anr amortized measure.
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close as possible to the work performed by the best se-
Definition 2.2 Consider an algorithm with P initial quential algorithm known. Unfortunately, this goal is
processors that terminates in parallel-time r after comn- not attainable when an adversary succeeds in causing

pleting its task on some input data I and in the presence t aan aders u a aing

of a failure pattern F. If Pi(I, F) < P is the number of too many processor failures during a computation.

processors completing an update cycle at time i, and c Example 2.1 Consider a Write-All solution, where it
is the time required to complete one update cycle, then takes a proessor one instruction to recover from a fail-
we define S(1, F, P) as: ure. If an adversary in a failure pattern F with the

number of failures and restarts IFI = Q(N'+) for c > 0,
S(I, F, P) = cZ Pi(I, F). 0J then the completed work will be Q(N'+'), and thus al-

~i= ready non-optimal and potentially large, regardless of
how efficient the algorithm is otherwise. Yet the algo-
rithm may be extremely efficient, since it takes only oneDefinition 2.3 A P-processor PRAM algorithm on instruction to handle a failure. 0

any input data I of size III = N and in the presence of

any pattern F of failures and restarts of size IFI < M: This illustrates the need for a measure of efficiency

(i) uses completed work: that is sensitive to both the size of the input N, andthe number of failures and restarts M = IF I. When

S = SN,Af,P = max{S(I, F, P)} , M = O(P) as in the case of the stop failures without
restarts in [KS 89], S properly describes the algorithm

(ii) has overhead ratio: efficiency, and a = 0( N ). However, when F can be

= S(I, F, P) large relative to N and P (as is the case when restartsa' = UrN,M,p = max. f 1
1,F I I+ IFI  are allowed) a better reflects the efficiency of a fault-

tolerant algorithm.
Remark 1 Update cycles are units of accounting. They Recall from Remark 2, that a is insensitive to the
do not constrain the instruction set of the PRAM and choice of S or S', and to using update cycles, as a mea-
failures can occur between the instructions of an update sure of work. lowever, update cycles are necessary for
cycle. However, note that in S(I, F, P) the processors the following two reasons.
are not charged for the read and write instructions of
update cycles that are not completed. Update cycles and termination:

Remark 2 Consider a definition of work S'(I, F, P) Our failure model requires that at any time, at least one
that also counts incomplete update cycles. Clearly processor is executing an update cycle that completes.
S'(I, F, P) < S(I, F, P) + l FI. Thus, using S' does (This condition subsumes the condition of [KS 891 that
asymptotically affect the measure of work (when IFI is one processor does not fail during the computation).
very large), but it does not asymptotically affect a. This requirement is formulated in terms of update cycles

and assures that some progress is made. Without it,
Remark 3 One might also generalize the overhead ra- the algorithms may not terminate, and when they do

ti a _( , er T11)is the time complexity temneth
t awhere W terminate the work may not be bounded by a function

of the best sequential solution known to date for the of N and P. Since the processors lose their context,
particular problem at hand. For the purposes of this after a failure, they have to read something to regain
exposition, it is sufficient to express a in terms of the it. Without at least one active update cycle completing,

Srio P) This is because for Write-All (by itself the adversary can force the PRAM to thrsh by allowing

and as used in the simulation) T(fII) = (jiI). only these reads to be performed. Similar concerns are
discussed in [SS 83].

2.2 Discussion of the technical choices
Update cycles as a unit of accounting:

Work vs. overlhead ratio:
In our definition of completed work we only count coin-

When dealing with arbitrary processor failures and pleted update cycles. Even if the progress and teriiina-
restarts, the completed work measure S depends on the tion of a computation is assured (by always completely
size N of the input I, the number of processors P, and executing at least one update cycle), but the proces-
the size of failure pattern F. The ultimate performance sors are charged for incomplete update cycles, the work
goal for a parallel fault-toleraut algorithim is to be able S' of any algorithm that simulates a single N proces-
to perform the required computation at a work cost as sor PRAM step is at least Q(P • N). The reason for
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this quadratic behavior in S' is the following simple and
rather uninteresting thrashing adversary. c N

Example 2.2 Let ALG be any algorithm that solves
the Write-All problem under the arbitrary failure and N o
restart model. Consider the standard PRAM read, com- I
pute, write cycles (if processors begin writing without G K M
reading, a simple modification of the following argu-
ment leads to the same result). A thrashing adversary
allows all processors to perform the read and compute Figure 1: A robust fail-stop multiprocessor.
instructions, then it fails all but one processor for the
write operation. The adversary then restarts all failed
processors. Since one write operation is performed per perfectly suited for implementing synchronous concur-

read, compute, write cycle, N cycles will be required rent reads and writes is formally treated in [KRS 881.

to initialize N array elements. Each of the P proces- Finally fail-stop processors are formally treated and
sors performs O(N) instructions which results in work justified in [SS 83].
of O(P • N). 0 The abstract model that we are studying can be real-

ized (Figure 1) in the following architecture, using tile
By charging the processors only for the completed components we have just overviewed:

fixed size update cycles, and not for partially completed
cycles, we do not charge for thrashing adversaries. It is 1. There are P fail-stop processors, each with a unique
interesting that this change in cost measure allows sub- address and some amount of local memory. Proces-
quadratic solutions. sors are unreliable.

2. There are Q addressable shared memory cells. The
2.3 An architecture for a restartable input of size N < Q is stored in shared memory.

fail-stop multiprocessor This memory is assumed to be reliable.

The main goal of this work is to study algorithmic tech- 3. Interconnection of processors and memory is pro-
niques that enable efficient parallel computation on mul- vided by a synchronous combining interconnection
tiprocessor systeris whose processors are subject to fail- network. This network is assumed to be reliable.
stop errors and restarts. lere we suggest one way of
realizing our abstract model of computation. With this architecture, our algorithmic techniques be-

Engineering and technological approaches exist that comne completely applicable, i.e., the algorithms and
allow implementing electronic components and systems simulations we develop will work correctly, and within
that operate correctly when subjected to certain failures the complexity bounds (under the unit cost memory ac-
(for examples, see [IEEE 90, Cri 91]). The technologies cess assumption) for all patterns of processor failures
we cite below are instrumental in providing the basic and restarts. This is true for as long a.Q the shared mcr-
hardware fault-tolerance, thus providing a foundation ory and the interconnection network are subject to the
on which the algorithmic and software fault-tolerance failures within their respective des ign parameters.
can be built..

Semiconductor memories are the essential compo-
nents of processors and of shared memory parallel sys- 3 Lower bounds
tens. These memory are being routinely manufactured
with built-in fault tolerance using replication anl coding As we have shown in Example 2.2, without the update
techniques without appreciably degrading performance cycle accounting there is a thrashing adversary that ex-
(see the survey [SM 84]). hibits a quadratic lower bound for the Writc-All prob-

Interconnection networks are typically used in a m1l- lem. With the update cycle accounting, we prove a
tiprocessor system to provide com umnication among )(N log N) lower bound theorem.
processors, memory modules and other devices, e.g.,
as in the Ultraconmptcr [Sch 801. The fault-tolerance Theoremii 3.1 Given any N-processor CRCV PRAM
of interconnection networks has been the subject of algorithm that solves the Write-All problem of size N,
much work in its own turn. The networks are made then the adversary, that can cause arbitrary processor
more reliable by employing redundancy (see the survey failures and restarts, can force the algorithm to perform
[AAS 871). A combinng mnterconnection network that is Q(N log N) completed work steps.
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Proof: Let Z be any algorithm for the Write-All prob- _ _ j __ [] = O( 37j 3 T-,'i)J NT
lem subject to arbitrary failure/restarts using update = O(N -J2 1 1 O(NlogN) 0

cycles. Consider each PRAM cycle. The adversary uses

the following iterative strategy:

All N processors are revived. For the upcoming cycle,
the adversary determines the processors assignment to 4 Computation on restartable
array elements. Let U > 1 be the number of unvisited fail-stop processors
array elements. By the pigeonhole principle, for any
processor assignment to the U elements, there is a set We first state the main result and then build the frame-
of [- J unvisited elements with no more than ["-- pro- work for proving it.
cessors assigned to them. The adversary chooses half of
the remaining previously unvisited array locations that Theorem 4.1 Any N-processor PRAM algorithm can
would have had no more than [L] processors assigned be executed on a fail-stop P-processor CRCW PRAM,
to them, and it fails these processors, allowing all oth- with P < N. Each N-processor PRAM step is executed
ers to proceed. Therefore at least [NJ processors will in the presence of any pattern F of failures and restarts
complete this step having visited no more than half of of size M with:
the remaining unvisited array locations.

This strategy can be continued for at least logN it- (i) the completed work:
erations. The work S performed by the algorithm will S = O(min{N + P log2 N + M log N, N • P 0 6}),

be S > [ -J logN = Q(N log N). (ii) the overhead ratio:

This lower bound is the tightest possible bound under a = O(log2 N).

the assumption that the processors can read and locally EREW, CREW, and WEAK and COMMON CRCW PRAM
process the entire shared memory at unit cost. Such an algorithms are simulated on fail-stop COMMON CRCW
assumption is very strong. However we take advantage PRAMs; ARBITRARY and STRONG CRCW PRAMs are
of the constructive proof strategy in the next section. simulated on fail-stop CRCW PRAMs of the same type.

0
Theorem 3.2 If the fail-stop processors can read and
locally process the entire shared memory at unit cost, Remark 4 PRIORITY CRCW PRAMs cannot be di-
then a solution for the Write-All problem can be con- rectly simulated using the same framework, for one of
structed such that its completed work, when using N the algorithms used (namely algorithm X in Section 4.2)
processors on the input of size N is S = ®(N log N). does not possess the processor allocation ionotonicity

property that assures that higher numbered processors
Proof: We complement the previous lower bound with simulate the steps of the higher numbered original pro-
the following oblivious strategy: at each step that a cessors.
processor PID is active, it reads the N elements of the
array x[l..N] to be visited. Say U of these elements We obtain this result by: (a) modifying an algorithm

are still not visited. T[ie processor numbers these U from [KS 89] to enable its use with restarts, (b) pre-

elements from I to U based on their position in the senting a new algorithm that has a good overhead ratio

array, and assigns itself to tire ith unvisited element such efficiency arid that terminates with sub-quadratic con-

that i = [IPID -!]. This achieves load balancing with pleted work, (c) merging the two algorithms, and using
N the techniques of [KPS 90] or [Shv 89] to produce elii-

met processors cient executions of arbitrary PRAM programs on faulty

CRCW PRAMs.
We list the elements of the Write-All array according We assume that N is a power of 2. Nonpowers of 2

to the time at which the elements are visited in ascend- can be handled using conventional padding techniques.
ing order. We break this list into adjacent segments All logarithms are base 2. Now the details.
numbered se(Iqentially starting with 1, such that seg-
rnent j contains Vj elements, for j in

and for some 7n < v'-. When processors were assigned 4.1 Algorithm V: a modification of IV
to the elements of the jth segment, there were no less of [KS 89]
than Uj = N- V V > N- (N- = N nvt NAlgoritn W of [KS 89] is an efficient fail-stop (no
elements. Therefore no more than [ ] processors were restart) Vrite-All soltion. The algorithm uses full hi-

assigned to each element. nary trees as its basic data structures. The trees are ini-

Tie work performed by such an algorithmn is: plicitly coded as heaps arid are stored in linear arrays.
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The algorithm uses an iterative approach in which all Algorithm V is an iterative algorithm through the
active processors synchronously execute the following following three phases (we "prime" the phases to dis-
four phases: tinguish them from the phases of algoritlun W):

1. In the first phase the processors are counted and 1' Allocate processors using PIDs in a dynamic top-
enumerated using a static bottom-up, logarithmic down traversal of the progress tree to assure load
time traversal of the processor counting tree data balancing (O(log N) time).
structure.

2' The processors now perform work at the leaves they
2. In the second phase the processors are allocated to reached in Phase I' (there are log N array elements

the unvisited array locations according to a divide- per leaf).
and-conquer strategy using a dynamic top-down
traversal of a progress tree data structure. 3' The processors begin at the leaves of the progress

tree where they ended Phase 2' and update the
3. The third phase is where the actual work (array progress tree dynamically, bottom up (O(logN)

assignments) is done. time).

4. In the fourth phase the progress is evaluated by a The following implementation detail is important
dynamic bottom-up traversal of the progress tree. riie oor ren ation ea ilreandrealizing processor re-synchronization after a failure an,;

This algorithm has efficient completed work when a restart. An iteration wrap-around counter is utilized,
subjected to arbitrary failure patterns without restarts. so that if a processor fails, and then is restarted, it waits

It can be extended to handle processor restarts by in- for the counter wrap-around to rejoin the computation.

troducing an iteration counter, and having the revived The point at which the counter wraps around depends

processors wait for the start of a new iteration. Ilow- on the length of the program code, but it is fixed at

ever this algorithm may not terminate if the adversary "compile time". If after a restart, a processor detects

does not allow any of the processors that were alive at that the counter did not change for one cycle, it asserts

the beginning of an iteration to complete that iteration. that no processors were active at the point of the restart,
Even if the extended algorithm were to terminate, its and it can start a new iteration by itself - this is possible

completed work is not bounded by a function of N and since the processors are synchronous.

P.

In addition, the proof framework of [KS 89] does not Analysis of algorithm V:

easily extend to include processor restarts, because the
processor enumeration and allocation phases become in- ny the gp oane fais and rst
efficient and possibly incorrect, since no accurate esti- in the fail-stop, and then in the fail-stop and restart
mates of active processors can be obtained when the setting.
adversary can revive any of the failed processors at any Lemma 4.2 The completed work of V using P < N
time.

processors that are subject to fail-stop errors withoutOn the other hand, the second phase of algorithm W restarts is S O(N + P log2 N).

can implement the processor assignment based on the

proof of Theorem 3.2 in O(log N) time by using the Proof: We distinguish two cases below. In each of the
permanent processor PII) in the top-down divide-and- cases, it takes O(log N O(log N) time to perform
conquer allocation. This also suggests that the processor processor allocation, and O(og N) time to perform the
enumneration phase of algorithni W does not iniprove its poesralctoad0lgN iet efr h
effcenacyo he rofelsorh can dorestart mprowork at the leaves. Thus each iteration of the algorithm

takes O(logN) time. We use Theorem 3.2, where in-

Therefore we present a modified version of algorithim stead of reading and locally processing the entire meie-
IV, that we call V. ory at unit cost, we use an O(log N) time iteration for

V uses the data structures of the optimized algorithm processor allocation.
IV of [KS 89], i.e., full binary trees with N leaves, for 1: 1 < P < Iu-N In this case, at most 1 processor

progress estimation and processor allocation. There are is ilo to
log aray eernnt~ assciaed wth achleaf X~men is initially allocated to each leaf. Similarly to Theoremlog N array elements associated w ithi each leaf. W hen 3 2 wh n t e frt NP le v s a e i it d th r

using P processor such that P > - on such data .3.2, when the first - P leaves are visited, there
log N aen oeta rcso loae oec efstructures, it is sufficient for each processor to take its are no more than l processor allocated to each leaf,

) odulo Nt a by th balanced allocation phase. When the remain-
tog1 IV ing P or less leaves are visited, the work is O(Plog ')

tial assignmiemit of at least [ NJ and no more than by Theorem 3.2 (not counting processor allocation).

r1i IgN] processors to a work element. Each leaf visit, takes O(log N) work steps, therefore the
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01 forall processors PID=0..P - 1 parbegin

02 Perform initial processor assignment to the leaves of the progress tree
03 while there is still work left in the tree do

04 if current subtree is done then move one level up
05 elseif this is a leaf then perform the work at the leaf
06 elseif this is an interior tree node then
07 if both subtrees are done then update the tree node
08 elseif only one is done then go to the one that is not done
09 else move to the left/right subtree according to PID bit values
10 fl
11 fi
12 od
13 parend

Figure 2: A high level view of the algorithm X.

completed work S = O((N - P + P log P)log N) = small IF], but it is not bounded by a function of P and
O(N + PlogPlogN) = O(N + Plog2 N). N for a large IFI). 0

Case 2: N < P < N. In this case, no more thanoN

rP/i] processors are initially allocated to each leaf.
Any two processors that are initially allocated to the 4.2 Algorithm X and its analysis
same leaf, should they both survive, will behave identi-
cally throughout the computation. Therefore we can use We present a new algorithm X for the Write-All prob-
Theorem 3.2 with the rP/ N 1 processor allocation as lem. We show that its completed work complexity islog N 

p 6

a multiplicative factor. From this the completed work Sg S = O(N •P") for any failure/restart pattern using

is [P/ N1O(o0 N log N )O(IogN) = O(P log2 N). P < N processors. The important property of X is that

The results of the two cases are combined to yield it has a bounded sub-quadratic completed work regard-

S = O(N + Plog2 N). 0 less of the failure pattern, and if a very large number
of failures occures, say IFI = Q(N P0 6), then the al-

The following theorem expresses the completed work gorithm's overhead ratio o, becomes optimal: it takes a

of the algorithm: fixed number of computing steps per failure/recovery.

The algorithm utilizes a progress tree of size N as
Theorem 4.3 The completed work of V using P < N algorithm V, but it is traversed by the processors in-
processors subject to arbitrary failure and restart pat- dependently, and not in synchronized phases. This re-
tern F of size Al is: S = O(N + P log2 N + Al log N). flects the local nature of the processor assignment in

algorithm X as opposed to the global assignments used
Proof: The proof of Letruma 4.2 does not rely on the in algorithms V and W. Each processor, acting tide-
fact that in the absence of restart, the number of ac- pendently, searches for work in the smallest imniediate
tive processors is non-increasing. However the lemma subtree that has work that needs to be done, it then
does not account for the work that might be spent by performs the neccessary work, and moves out of that
the processors that are active during a part of an it- subtree when no more work remains. Details follow.
eration without contributing to the progress of the al-
gorithm due to failures. To account for all work, we Input: Shared array x[l..N]; x[i] = 0 for 1 < i < N.

are going to charge to the array being processed the Output: Shared array x[1..N]; x[i] = 1 for 1 < i < N.
work that contributes to progress, and any work that
was "wasted" due to failures will be charged to the fail- Data-structures: rrhe algorithm uses a full binary tree

ures and restarts. Lemma 4.2 accounts for the work of size 2N - 1, stored as a heap d[1 ... 2N-1] in shared

charged to the array. Otherwise, we observe that a pro- memory. An internal tree node d[i] (i = 1 .. N -

cessor can "waste" no more than O(log N) time steps 1) has the left child d[2i] and the right child d[2i + 1].
without contributing to the progress due to a failure The tree is used for progress evaluation and processor

and/or a restart. Therefore this amount of "wasted" allocation. The values stored in the heap are initially 0.
work is bounded by O(M log N). This proves the theo- The N elements of the input array x[l ... N] is as-
rern. (Note that the completed work S of V is small for sociated with the leaves of the tree. Element x[iJ is

8



associated with d[i + N - 1], where I < i < N. The al-
gorithm also utilizes an array w[0..P- 1] that is used to
store individual processor locations within the progress
tree d.

Each processor uses some constant amount of pri- [0] 1] [4][6]

vate memory to perform simple arithmetic computa-
tions. An important private constant is PID, containing
the initial processor identifier. 0 1 2 3 4 5 6 [7]

Thus, the overall memory used is O(N + P) and the
data-structures are simple. Figure 3: Processor traversal of the progress tree.

Control-flow: The algorithm consists of a single ini- processors are indicated by the arrows. Active proces-
tialization and of tie parallel loop. The high level view sor locations (at the time when the snapshot was taken)
of the algorithm is in Figure 2 (all line numbers refer to are indicated by their PIDs in brackets. In this config-
the figure), a more detailed code is in the appendix. uration, should the active processors complete the next

This algorithm is performed by all processors that cycle, they will move in the directions indicated by the

are active. The initialization (line 02) assignes the P arrows: processors 0 and I will descend to the left and

processors to the leaves of the progress tree so that the right respectively, processor 4 will move to the unvisited

processors are assigned to the first P leaves by storing leaf to its right,, and processors 6 and 7 will move up. 0

the initial leaf assignment in w[PID]. The loop (lilies
03-12) consists of a multi-way decision (lines 04-11) to: Regardless of the decision made by a processor within

(line 04) move up the tree if the current node is marked the loop body, each iteration of the body consists of no

done, (line 05) perform the work if at a leaf, (line 07) more than four shared memory reads, a fixed time con-

update the interior tree node if both of its subtrees are putation using private memory, and one shared mcmi-

done by changing its value from 0 to 1, (line 08) move ory write (see the appendix for the detailed algorithm).

down to the left/right subtrees based on either the one Therefore the body can be implemented as an update

of the subtrees being not done. cycle.

For the final case (line 09), the processors move down
when neither child is done based on the processor iden- Analysis of algorithm X:

tifier. This last case is where the non-trivial (italicized) We begin by showing correctness and termination of
decision is made. The PID of the processor is used at ae Xein y sh owing simle an inat
depth h of the tree node based on the value of the 1 th algorithm X in the following simple lemma.
most significant bit of the binary representation of the Lemma 4.4 Algorithm X with N processors is a cor-
PID: bit 0 will send the processor to the left, and bit I rect Q(log N) and O(N) time fault-tolerant solution for

to the right. the Write-All problem of size N. 0

Remark 5 It is possible to perform local optimization Now a lemma relating completed work when overlap-
of the algorithm by: (i) evenly spacing the P processors ping of processors occurs, and the main work lemma. In
N/P leaves apart by when P < N, and by (ii) using the rest of this section, the expression "SNp" denotes
the integer values at the progress tree nodes to repre- the completed work on inputs of size N using P initial
sent the known number of descendent leaves visited by processors and for any failure pattern.
the algorithm. Our worst case analysis (foes not benefit
from these modifications. Lenmma 4.5 For algorithm X, if N is the size of tlie

input,, adl(l N < P < P2 , then the work using ',
Example 4.1 Consider algorithmi X for N = P = 8. processors and the work using P2 processors relate as
The progress tree d of size 2N - 1 = 15 is used to SN, < [,]SN,P.
represent tie full binary progress tree with eight leaves.
The 8 processors have PI)s in the range 0 through 7. Proof sketch: This follows from the Definition 2.2 of S
Their initial positions are indicated in Figure 3 under and the observation that if P > N, then exactly log N
the leaves of the tree. bits of the PlI)s are significant during the execution of

The diagram in Figure 3 illustrates the state of a algorithm X. We observe that any two processors whose
computation where the processors were subject to somne PIDs are equal modulo N, will expend no more than a
failures and restarts. Ileavy dots indicate nodes whose single processor in the worst case at twice the cost. 0
subtrees are finished. The paths being traversed by the
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Lemma 4.6 The work complexity S of algorithm X
with N initial processors for the Write-All problem of P/2 I

size N and for any pattern of failures and restarts is
S = O(N 1 g . 3+ 1) for any b > 0.

logN
Proof: We will show that for any positive 6 there is
a constant c, such that S < cNlo5 3 + 6 . We proceed E 
by induction on the height of the progress tree. For the N12 N/2
base case: we have a tree of height 0 that corresponds to
an input array of size 1, and exactly 1 processor. Since Figure 4: Inductive step for Lemma 4.6.
at least this processor will be active, this single leaf
will be visited in a constant number of steps. Let the
work expended be c' for some constant c' that depends ter this, each processor will spend some constant mini-
only on the lexical structure of the algorithm. Therefore ber of steps moving to the root and terminating the al-
SIl = C' < C" 1

Iog3+6 for all c > c', and any 6 > 0. gorithm. This work is bounded by c"N for some small

For the inductive hypothesis: we assume that for the constant c". The total work S is:

tree heights less than log N, and for any 6 > 0, the S < SL + c' L log N + SR + c"N
required constant c exists. We then prove that this is < c(N)Iog 3 +6 + c' T logN + 2c( )IoS3 +6 + c"N
true for the tree of height log N. < 2 3 + -'r- + c"N

Consider the two subtrees of the root (Figure 4). The We cWhen c is made sufficiently large based on b withi
two corresponding subtrees are of the heights log N -

1. By the definition of algorithm X, no processor will respect to the fixed c' and c", e.g., c> :_2Tc , then:

leave a subtree until the subtree is finished. We have to S < cNIog3+ 6

consider the following two sub-cases: (1) both subtrees Since a constant c depends only on the lexical struc-
are finished simultaneously, and (2) one of the subtrees ture of the algorithm and 6, it can always be chosen
is finished before the other. sufficiently large to satisfy the base case and both the

Case 1: If both subtrees are finished simultaneously, cases (1) and (2) of the inductive step. This completes

thgen the algorithm will then terminate after some small the proof of tie second case and of the lemma. 0

constant number of steps c' when a processor moves
to the root and determines that both of the subtrees Now we generalize this result for P < N:
are finished. By the inductive hypothesis, there exists
a c such that both the work SL expended in the left Theorem 4.7 There is an algorithm that solves the
subtree of, and the work SR in the right subtree are Wrie-AII problem with completed work S O(N
bounded by SEj < C(1)1'93+ 6 . The work needed for pog92+6) for any 6 > 0, where N is the input array

the algorithm to terminate is at most c'N, and so the size and P < N is the initial number of processors.
total work is: Proof sketch: We position the P processors at the first,

S< SL + SR + c'N _< 2 SNN + N P elements of the input array. It is easy to show that< cN
I g + 4 CN 2 Nlog3+6S= LS, =0Ypo36

c 2c(- L)'o + c'N _2 _TN + c'N. S o( N Sp) =(Npog3+6) - O(N . plog +6) 0-- 2 32 "

When c is chosen sufficiently larger than c', e.g., c >
3c', then S < cNIog 

2. For example, when 6 is about 0.01, S = O(N •.
We next show a particular performance of algorithmm N

Case 2: Assum e w.l.o.g. that the left subtree is finished s c te t s o p l d w or is ally close t

first with SL = S, N < c(L. -- + ' by the inductive such that its completed work is asymptotically close to
2_ - 2 )Ioits upper bound.

hypothesis. '[he processors from the left subtree will
start moving via the root to the right subtree. The Theorem 4.8 There exists a pattern of fail-stop/restart
path traversed by any processor as it moves to the right errors that cause the algorithm X to perform S =
subtree after the left subtree is finished is bounded by Q(NIoS3 ) work on the input of size N using P = N
c' logN for a predefined constant c' (the longest path processors.
from a leaf to another leaf). No more than the original
NT processors of the left subtree will move, and so the Proof sketch: We compute the exact work performed
work of moving the processors is bounded by c'- log N. by the algorithm when the adversary adheres to the

By Lemma 4.5 and by the inductive hypothesis, the following strategy: the processor with PID 0 will be al-
work SR to complete the right subtree using N proces- lowed to sequentially traverse the progress tree in post-
sors is bounded by Sq,N 2SN< < 2,c( -) Iog 3+4. Af- order starting at the leftmost leaf and finishing at the
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rightmost leaf. The processors that find themselves at Theorein 4.1 follows from Theorem 4.9 and the results
the same leaf as the processor 0 are (re)started, while of [KPS 90] or [Shv 89].
the rest are failed. All processors with PIDs smaller The following corollaries are also interesting:
than the index of the last leaf visited by processor 0 are
allowed to traverse the progress tree until they reach a Corollary 4.10 Under the hypothesis of Theoreni 1.1,
leaf. When processors reach a leaf, the failure/restart and if Fl < P < N, then S =O(N + Plog2 N), and
procedure is repeated. 0 (7 O(log 2 N).

The fail-stop (without restarts) behavior is subsumed
4.3 Combining the building blocks by Corollary 4.10. Without restarts, [KPRS 90] have aii1 2N

algorithm with S = O(N+ P ), and [Mar 91] has
An approach for executing arbitrary PRAM programs shown that the same performance is achieved by algo-
on fail-stop CRCW PRAMs (without restart) was pre- rithm w from [KS 89]. The exact analysis of algorithn

sented independently in [KPS 90] and [Shy 89]. The V without restart.s is still open.

execution is based on simulating individual PRAM coin-

putation steps using the Write-All paradigm, and it was Corollary 4.11 Under the hypothesis of Theorem 4.1:
shown that the complexity of solving a N-size instance
of the Vrite-All problem using P fail-stop processors, 1. when [El is Q(N log N), then oa is O(log N),
and the complexity of executing a single N-processor 2. when IFl is Q(N' 6 ), then a is 0(1).
PRAM step on a fail-stop P-processor PRAM are equal.
Here we describe how algorithms V and X are combined Thus the efficiency of our algorithm improves for large
with the framework of [KPS 90] or [Shv 89] to yield ef- failure patterns.
ficient executions of PRAM programs on PRAMs that These results also suggest that it is harder to (teal
are subject to stop-failures and restarts as stated in ''he- efficiently with a few worst case failures than with a
orem 4.1.e 4.s o e tlarge number of failures.
We first observe that the executions of algorithms V Another interesting result is that there is a range of

and X can be interleaved to yield an algorithmn that parameters for which the completed work is optimal,achieves the following performance: i.e., the work performed in executing a parallel algo-
rithim on a faulty PRAM is asymptotically equal to the

Theorem 4.9 There exists a Write-All solution us- Parallel-timex Processors product for that algorithm:
ing P < N processors on instances of size N such

that for any pattern F of failures and restarts with
IFl < M, the completed work is S = 0(min{N + Corollary 4.12 Any N-processor, r-time PRAM algo-
P log 2 N + M log N, N. P° 61), and the overhead ratio rithm, can be executed on a P < N/ log2 N proces-

is a' = O(log 2 N) . sor fail-stop CRCW PRAM, such that when during the
execution of each N-processor step of that algorithm

The simulations of the individual PRAM steps are the total number of processor failures and restarts is

based on replacing the trivial array assignments in a O(N/ log N), then the completed work is S = O(7. N).

Write-All solution with the appropriate components of
the PRAM steps. These steps are decomposed into a It also follows that optiiality is preserved in the ab-
fixed number of Lsignments corresponding to the sta- sence of failures or when during time execution of each N

dard fetch/decode/execute RAM instruction cycles in processor step there are 0(logN) failures and restarts

which the data words are moved between the shared per each simulating processor. This is because in ei-

memory and the internal processor registers. The re- ther of these two cases, the size of the failure/restart
suiting algorithm is then used to interpret the individ- pattern F is bounded by: IFl < O(PlogN) =

ual cycles using the available fail-stop processors and (--- logN)= O(N/logN).
to ensure that the results of computations are stored in
temporary memory before simulating the synchronous
updates of the shared imenory with the new values. For 5 Discussion and Open Prob-
the details on this technique, the reader is referred to lems
[KS 89, KPS 90, Shv 89]. Application of these tech-
niqies in conjunction with the algorithms V and X yield We conclude with a brief discussion of open problems
efficient and terminating executions of any non-fault- and the effects of on-line adversaries on the expected
tolerant PRAM programs in the presence of arbitrary performance of randomized algorithms. First tie open
failure and restart patterns. problems and future work:
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" Lower bounds with and without restarts: We O(N)Pwork using N processors on i uts
have shown an (Q(N log N) lower bounds for fail- of size N.

ures/restarts under the assumption that processors In contrast, we observe that a simple stalkiig adver-
can read and locally process the entire shared meii- s csary causes the ACC algoritlin to perform (expected)
ory at unit cost. Under this assumption this is the work of Q(N ' /poly log N) in the case of fail-stop er-
best possible lower bound. N(( N ) - N

rors, and poly0 j log N -ITr'17 )work in tic caseofal
Under the same assumption, it can be shown that stop errors with restart even when using I) < N

tnoN io$ N
the lower bound of [KS 89] of l(N log NI/log log N) processors. The stalking adversary strategy consists
is the best possible bound for failures without of choosing a single leaf in a binary tree employed by
restarts. ACC, and failing all processors that touch that leaf un-

Under a different assumptions, an Q2(N log N) is til only one processor remains in the fail-stop case, or

shown for failures without restarts in [KPRS 90]. until all processors simultaneously touch the leaf in the

Can these bounds be further improved using differ- fail-stop/restart case. This performance is not improved
ent assumptions? even when using the completed work accounting. On a

positive note, when the adversnry is made off-line, the
" Upper bounds with restarts: Progress in this area ACC algorithm becomes efficient in the fail-stop/restart

ought to be made by finding new algorithms, or setting.
iriproving the analysis of existing algorithms to
achieve better completed work S and the overhead
ratio a than those of algorithms V and X. Acknowledgements:

* Upper bounds without restarts: What is the worst We thank Jeff Vitter for helpful discussions, and Franico
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forall processors PID=O..P - 1 parbegin
shared xfl..N]; -- shared memory
shared d[1..2N-l]; -- "done" heap (progress tree)
shared w[O..P-1]; -- "where" array
private done, where; -- current node done/where
private left, right; -- left/right child values

action,recovery
w[PID] := I + PID; -- the initialpositions

end ;

action,recovery
while w[PID] j4 0 do -- while haven't exited the tree

where := w[PID]; -- current heap location

done := d[where]; -- doneness of this subtree
if done then w[PID] := where div 2; -- move up one level
elseif not done A where > N - 1 then -- at a leaf

if x[where-N] = 0 then x[where-N] 1; -- initialize leaf
elseif x[where-N] = I then d[where] := 1; -- indicate "done"

fl
elseif not done A where < N - 1 then -- interior tree node

left := d[2*where]; right := d[2*where+I]; -- read left/right child values
if left A right then d[where] = 1; -- both children done
elseif not left A right then w[PID] 2*where; --- go left
elseif left A not right then w[PID] := 2*whert,-: -- go right
elseif not left A not right then -- both subtrees are not done

-- move down according to the PID bit

if not PID[log(where)] then w[PID] := 2*where; -- move left
elseif PID[log(where)] then w[PID] := 2*where+l; -- move right
fl

fl
fl

od
end

parend.

Figure 5: Algorithm X.

Appendix: Algorithm X Remark 6 The action/recovery construct can be im-
pseudocode plernented by appropriately checkpointing the instruc-

tion counter in stable storage as the last instruction of
Here we give a detailed pseudocode for algorithm X. an action, and reading the instruction counter upon a

In the algorithm X pseudocode, the action, recov- restart. We are not providing further details here.

cry end construct of [SS 83] is used to denote the ac-
tions and the recovery procedures for the processors. Remark 7 rhe algorithm can be used to solve 11'rite-

In the algorithm this signifies that an action is also its All "in place" using the array xO as a tree of height

own recovery action, should a processor fail at any point log 2 with the leaves x[N/2..N-I], and doubling up the

within the action block, processors at the leaves, and using x[N] as the final el-

The notation "'ll)[log(k)]" is used to dlenote the ernent to be initialized and used as the algorithm ter-

binary true/false value of the [log(k-th bit of the nination sentinel. With this modification, array do_ is

log(N)-bit long binary representation of P1I), where the not needed. The asymptotic efficiency of the algorithm

most significant bit is the bit number 0, and the least is not affected.

significant bit is bit number log N. Finally, (liv stands
for integer division with truncation.
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